Interface designers have come to appreciate that humans' readiness to interpret computer output as genuinely conversational—even when it is actually based on rather simple pattern-matching—can be exploited for useful purposes. Most people prefer to engage with programs that are human-like, and this gives chatbot-style techniques a potentially useful role in interactive systems that need to elicit information from users, as long as that information is relatively straightforward and falls into predictable categories. Thus, for example, online help systems can usefully employ chatbot techniques to identify the area of help that users require, potentially providing a "friendlier" interface than a more formal search or menu system. This sort of usage holds the prospect of moving chatbot technology from Weizenbaum's "shelf ... reserved for curios" to that marked "genuinely useful computational methods".

Social networking bots are sets of algorithms that take on the duties of repetitive sets of instructions in order to establish a service or connection among social networking users. Various designs of networking bots vary from chat bots, algorithms designed to converse with a human user, to social bots, algorithms designed to mimic human behaviors to converse with behavioral patterns similar to that of a human user. The history of social botting can be traced back to Alan Turing in the 1950s and his vision of designing sets of instructional code that passes the Turing test. From 1964 to 1966, ELIZA, a natural language processing computer program created by Joseph Weizenbaum, is an early indicator of artificial intelligence algorithms that inspired computer programmers to design tasked programs that can match behavior patterns to their sets of instruction. As a result, natural language processing has become an influencing factor to the development of artificial intelligence and social bots as innovative technological advancements are made alongside the progression of the mass spreading of information and thought on social media websites.
Despite all efforts during almost half a century, most chatbots are still easily uncovered, but over the next decades they will definitely get smarter and finally we will distinguish human beings by them giving us silly answers as opposed to the much smarter chatbots. All of this will really start accelerating as soon as one single chatbot is smarter than one single human being. They will then be able to learn from each other, instead of learning from human beings, their knowledge will explode and they will be able to design even better learning mechanisms. In the long run, we will learn language from chatbots instead of the other way around.

The term chat bot (or sometimes just bot) can also be used in the meaning of an automatic chat responder program. The article How to Create a Chat Bot for Yahoo Messenger written by Chelsea Hoffman, explains how quick and easy it is to create a Chat bot responder containing unique and accurate responses to general phrases, words and questions that are used in Yahoo messenger.
“It’s hard to balance that urge to just dogpile the latest thing when you’re feeling like there’s a land grab or gold rush about to happen all around you and that you might get left behind. But in the end quality wins out. Everyone will be better off if there’s laser focus on building great bot products that are meaningfully differentiated.” — Ryan Block, Cofounder of