According to Richard Wallace, chatbots development faced three phases over the past 60 years. In the beginning, chatbot only simulated human-human conversations, using canned responses based on keywords, and it had almost no intelligence. Second phase of development was strictly associated with the expansion of Internet, thanks to which a chatbot was widely accessed and chatted with thousands of users. Then, the first commercial chatbot developers appeared. The third wave of chatbots development is combined with advanced technologies such as natural language processing, speech synthesis and real-time rendering videos. It comprises of chatbot appearing within web pages, instant messaging, and virtual worlds.

A representative example of a chat bot is A.L.I.C.E., brought to artificial life in 1995 by Richard Wallace. The A.L.I.C.E. bot participated in numerous competitions related to natural language processing evaluation and obtained many honors and awards, and it is also worth mentioning that this chat bot won the Loebner Prize contest at least three times, it was also part of the top 10 at Chatterbox competition, and won the best character/personality chat bot contest.


“It’s hard to balance that urge to just dogpile the latest thing when you’re feeling like there’s a land grab or gold rush about to happen all around you and that you might get left behind. But in the end quality wins out. Everyone will be better off if there’s laser focus on building great bot products that are meaningfully differentiated.” — Ryan Block, Cofounder of Begin.com


Pop-culture references to Skynet and a forthcoming “war against the machines” are perhaps a little too common in articles about AI (including this one and Larry’s post about Google’s RankBrain tech), but they do raise somewhat uncomfortable questions about the unexpected side of developing increasingly sophisticated AI constructs – including seemingly harmless chatbots.
AIML, Artificial Intelligence Markup Language developed by Richard Wallace, constitutes an open standard for creating your own chat bot. AIML file consists of row-type, database-style data combined with hierarchical XML data in each response. This video shows one of spreadsheet-style editors for AIML, Simple AIML Editor (SAE) developed by Adeena Mignogna. The SAE allows botmasters to manage large AIML sets and then zoom in on the templates to edit the responses.
Smart chatbots rely on artificial intelligence when they communicate with users. Instead of pre-prepared answers, the robot responds with adequate suggestions on the topic. In addition, all the words said by the customers are recorded for later processing. However, the Forrester report “The State of Chatbots” points out that artificial intelligence is not a magic and is not yet ready to produce marvelous experiences for users on its own. On the contrary, it requires a huge work:

Companies and customers can benefit from internet bots. Internet bots are allowing customers to communicate with companies without having to communicate with a person. KLM Royal Dutch Airlines has produced a chatbot that allows customers to receive boarding passes, check in reminders, and other information that is needed for a flight.[10] Companies have made chatbots that can benefit customers. Customer engagement has grown since these chatbots have been developed.
“There is hope that consumers will be keen on experimenting with bots to make things happen for them. It used to be like that in the mobile app world 4+ years ago. When somebody told you back then… ‘I have built an app for X’… You most likely would give it a try. Now, nobody does this. It is probably too late to build an app company as an indie developer. But with bots… consumers’ attention spans are hopefully going to be wide open/receptive again!” — Niko Bonatsos, Managing Director at General Catalyst
×