A representative example of a chat bot is A.L.I.C.E., brought to artificial life in 1995 by Richard Wallace. The A.L.I.C.E. bot participated in numerous competitions related to natural language processing evaluation and obtained many honors and awards, and it is also worth mentioning that this chat bot won the Loebner Prize contest at least three times, it was also part of the top 10 at Chatterbox competition, and won the best character/personality chat bot contest.
The “web-based” solution, which runs on a remote server, is generally able to be reached by the general public through a web page. It constitutes a web page with a chatbot embedded in it, and a text form is the sole interface between the user (you) and the chatbot. Any “upgrades” or improvements to the interface are solely the option and responsibility of the botmaster.
Sometimes it is hard to discover if a conversational partner on the other end is a real person or a chatbot. In fact, it is getting harder as technology progresses. A well-known way to measure the chatbot intelligence in a more or less objective manner is the so-called Turing Test. This test determines how well a chatbot is capable of appearing like a real person by giving responses indistinguishable from a human’s response.
There are several defined conversational branches that the bots can take depending on what the user enters, but the primary goal of the app is to sell comic books and movie tickets. As a result, the conversations users can have with Star-Lord might feel a little forced. One aspect of the experience the app gets right, however, is the fact that the conversations users can have with the bot are interspersed with gorgeous, full-color artwork from Marvel’s comics. 
Smart chatbots rely on artificial intelligence when they communicate with users. Instead of pre-prepared answers, the robot responds with adequate suggestions on the topic. In addition, all the words said by the customers are recorded for later processing. However, the Forrester report “The State of Chatbots” points out that artificial intelligence is not a magic and is not yet ready to produce marvelous experiences for users on its own. On the contrary, it requires a huge work:
This is where most applications of NLP struggle, and not just chatbots. Any system or application that relies upon a machine’s ability to parse human speech is likely to struggle with the complexities inherent in elements of speech such as metaphors and similes. Despite these considerable limitations, chatbots are becoming increasingly sophisticated, responsive, and more “natural.”
One pertinent field of AI research is natural language processing. Usually, weak AI fields employ specialized software or programming languages created specifically for the narrow function required. For example, A.L.I.C.E. uses a markup language called AIML, which is specific to its function as a conversational agent, and has since been adopted by various other developers of, so called, Alicebots. Nevertheless, A.L.I.C.E. is still purely based on pattern matching techniques without any reasoning capabilities, the same technique ELIZA was using back in 1966. This is not strong AI, which would require sapience and logical reasoning abilities.
“Beware though, bots have the illusion of simplicity on the front end but there are many hurdles to overcome to create a great experience. So much work to be done. Analytics, flow optimization, keeping up with ever changing platforms that have no standard. For deeper integrations and real commerce like Assist powers, you have error checking, integrations to APIs, routing and escalation to live human support, understanding NLP, no back buttons, no home button, etc etc. We have to unlearn everything we learned the past 20 years to create an amazing experience in this new browser.” — Shane Mac, CEO of Assist
×