Chatbots are predicted to be progressively present in businesses and will automate tasks that do not require skill-based talents. Companies are getting smarter with touchpoints and customer service now comes in the form of instant messenger, as well as phone calls. IBM recently predicted that 85% of customer service enquiries will be handled by AI as early as 2020.[62] The call centre workers may be particularly at risk from AI.[63]
Despite all efforts during almost half a century, most chatbots are still easily uncovered, but over the next decades they will definitely get smarter and finally we will distinguish human beings by them giving us silly answers as opposed to the much smarter chatbots. All of this will really start accelerating as soon as one single chatbot is smarter than one single human being. They will then be able to learn from each other, instead of learning from human beings, their knowledge will explode and they will be able to design even better learning mechanisms. In the long run, we will learn language from chatbots instead of the other way around.
Derived from “chat robot”, "chatbots" allow for highly engaging, conversational experiences, through voice and text, that can be customized and used on mobile devices, web browsers, and on popular chat platforms such as Facebook Messenger, or Slack. With the advent of deep learning technologies such as text-to-speech, automatic speech recognition, and natural language processing, chatbots that simulate human conversation and dialogue can now be found in call center and customer service workflows, DevOps management, and as personal assistants.
Jabberwacky learns new responses and context based on real-time user interactions, rather than being driven from a static database. Some more recent chatbots also combine real-time learning with evolutionary algorithms that optimise their ability to communicate based on each conversation held. Still, there is currently no general purpose conversational artificial intelligence, and some software developers focus on the practical aspect, information retrieval.
ALICE – which stands for Artificial Linguistic Internet Computer Entity, an acronym that could have been lifted straight out of an episode of The X-Files – was developed and launched by creator Dr. Richard Wallace way back in the dark days of the early Internet in 1995. (As you can see in the image above, the website’s aesthetic remains virtually unchanged since that time, a powerful reminder of how far web design has come.) 
Social networking bots are sets of algorithms that take on the duties of repetitive sets of instructions in order to establish a service or connection among social networking users. Various designs of networking bots vary from chat bots, algorithms designed to converse with a human user, to social bots, algorithms designed to mimic human behaviors to converse with behavioral patterns similar to that of a human user. The history of social botting can be traced back to Alan Turing in the 1950s and his vision of designing sets of instructional code that passes the Turing test. From 1964 to 1966, ELIZA, a natural language processing computer program created by Joseph Weizenbaum, is an early indicator of artificial intelligence algorithms that inspired computer programmers to design tasked programs that can match behavior patterns to their sets of instruction. As a result, natural language processing has become an influencing factor to the development of artificial intelligence and social bots as innovative technological advancements are made alongside the progression of the mass spreading of information and thought on social media websites.

Sometimes it is hard to discover if a conversational partner on the other end is a real person or a chatbot. In fact, it is getting harder as technology progresses. A well-known way to measure the chatbot intelligence in a more or less objective manner is the so-called Turing Test. This test determines how well a chatbot is capable of appearing like a real person by giving responses indistinguishable from a human’s response.
You can find chatbots on many messaging apps, including Facebook Messenger, WhatsApp, Kik, and Telegram. Even the more work-focused service Slack has its own built-in bot that helps you set reminders and jot down notes. Twitter has bots too which will reply to you, but usually not offer any assistance. I've rounded up some of the top chatbots on each platform in the list below.
A representative example of a chat bot is A.L.I.C.E., brought to artificial life in 1995 by Richard Wallace. The A.L.I.C.E. bot participated in numerous competitions related to natural language processing evaluation and obtained many honors and awards, and it is also worth mentioning that this chat bot won the Loebner Prize contest at least three times, it was also part of the top 10 at Chatterbox competition, and won the best character/personality chat bot contest.
Pop-culture references to Skynet and a forthcoming “war against the machines” are perhaps a little too common in articles about AI (including this one and Larry’s post about Google’s RankBrain tech), but they do raise somewhat uncomfortable questions about the unexpected side of developing increasingly sophisticated AI constructs – including seemingly harmless chatbots.
Social networking bots are sets of algorithms that take on the duties of repetitive sets of instructions in order to establish a service or connection among social networking users. Various designs of networking bots vary from chat bots, algorithms designed to converse with a human user, to social bots, algorithms designed to mimic human behaviors to converse with behavioral patterns similar to that of a human user. The history of social botting can be traced back to Alan Turing in the 1950s and his vision of designing sets of instructional code that passes the Turing test. From 1964 to 1966, ELIZA, a natural language processing computer program created by Joseph Weizenbaum, is an early indicator of artificial intelligence algorithms that inspired computer programmers to design tasked programs that can match behavior patterns to their sets of instruction. As a result, natural language processing has become an influencing factor to the development of artificial intelligence and social bots as innovative technological advancements are made alongside the progression of the mass spreading of information and thought on social media websites.
“We believe that you don’t need to know how to program to build a bot, that’s what inspired us at Chatfuel a year ago when we started bot builder. We noticed bots becoming hyper-local, i.e. a bot for a soccer team to keep in touch with fans or a small art community bot. Bots are efficient and when you let anyone create them easily magic happens.” — Dmitrii Dumik, Founder of Chatfuel
×